Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.683
1.
Sci Rep ; 14(1): 10985, 2024 05 14.
Article En | MEDLINE | ID: mdl-38744979

Several prognostic factors are known to influence survival for patients treated with IDH-wildtype glioblastoma, but unknown factors may remain. We aimed to investigate the prognostic implications of early postoperative MRI findings. A total of 187 glioblastoma patients treated with standard therapy were consecutively included. Patients either underwent a biopsy or surgery followed by an early postoperative MRI. Progression-free survival (PFS) and overall survival (OS) were analysed for known prognostic factors and MRI-derived candidate factors: resection status as defined by the response assessment in neuro-oncology (RANO)-working group (no contrast-enhancing residual tumour, non-measurable contrast-enhancing residual tumour, or measurable contrast-enhancing residual tumour) with biopsy as reference, contrast enhancement patterns (no enhancement, thin linear, thick linear, diffuse, nodular), and the presence of distant tumours. In the multivariate analysis, patients with no contrast-enhancing residual tumour or non-measurable contrast-enhancing residual tumour on the early postoperative MRI displayed a significantly improved progression-free survival compared with patients receiving only a biopsy. Only patients with non-measurable contrast-enhancing residual tumour showed improved overall survival in the multivariate analysis. Contrast enhancement patterns were not associated with survival. The presence of distant tumours was significantly associated with both poor progression-free survival and overall survival and should be considered incorporated into prognostic models.


Brain Neoplasms , Glioblastoma , Magnetic Resonance Imaging , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/surgery , Glioblastoma/mortality , Glioblastoma/pathology , Glioblastoma/therapy , Magnetic Resonance Imaging/methods , Female , Male , Middle Aged , Prognosis , Aged , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Adult , Neoplasm, Residual/diagnostic imaging , Postoperative Period , Progression-Free Survival
2.
Acta Neurochir (Wien) ; 166(1): 212, 2024 May 13.
Article En | MEDLINE | ID: mdl-38739282

PURPOSE: Glioblastoma is a malignant and aggressive brain tumour that, although there have been improvements in the first line treatment, there is still no consensus regarding the best standard of care (SOC) upon its inevitable recurrence. There are novel adjuvant therapies that aim to improve local disease control. Nowadays, the association of intraoperative photodynamic therapy (PDT) immediately after a 5-aminolevulinic acid (5-ALA) fluorescence-guided resection (FGR) in malignant gliomas surgery has emerged as a potential and feasible strategy to increase the extent of safe resection and destroy residual tumour in the surgical cavity borders, respectively. OBJECTIVES: To assess the survival rates and safety of the association of intraoperative PDT with 5-ALA FGR, in comparison with a 5-ALA FGR alone, in patients with recurrent glioblastoma. METHODS: This article describes a matched-pair cohort study with two groups of patients submitted to 5-ALA FGR for recurrent glioblastoma. Group 1 was a prospective series of 11 consecutive cases submitted to 5-ALA FGR plus intraoperative PDT; group 2 was a historical series of 11 consecutive cases submitted to 5-ALA FGR alone. Age, sex, Karnofsky performance scale (KPS), 5-ALA post-resection status, T1-contrast-enhanced extent of resection (EOR), previous and post pathology, IDH (Isocitrate dehydrogenase), Ki67, previous and post treatment, brain magnetic resonance imaging (MRI) controls and surgical complications were documented. RESULTS: The Mantel-Cox test showed a significant difference between the survival rates (p = 0.008) of both groups. 4 postoperative complications occurred (36.6%) in each group. As of the last follow-up (January 2024), 7/11 patients in group 1, and 0/11 patients in group 2 were still alive. 6- and 12-months post-treatment, a survival proportion of 71,59% and 57,27% is expected in group 1, versus 45,45% and 9,09% in group 2, respectively. 6 months post-treatment, a progression free survival (PFS) of 61,36% and 18,18% is expected in group 1 and group 2, respectively. CONCLUSION: The association of PDT immediately after 5-ALA FGR for recurrent malignant glioma seems to be associated with better survival without additional or severe morbidity. Despite the need for larger, randomized series, the proposed treatment is a feasible and safe addition to the reoperation.


Aminolevulinic Acid , Brain Neoplasms , Glioblastoma , Neoplasm Recurrence, Local , Photochemotherapy , Surgery, Computer-Assisted , Humans , Glioblastoma/surgery , Glioblastoma/drug therapy , Glioblastoma/diagnostic imaging , Aminolevulinic Acid/therapeutic use , Male , Brain Neoplasms/surgery , Brain Neoplasms/drug therapy , Brain Neoplasms/diagnostic imaging , Female , Middle Aged , Photochemotherapy/methods , Neoplasm Recurrence, Local/surgery , Aged , Cohort Studies , Surgery, Computer-Assisted/methods , Photosensitizing Agents/therapeutic use , Adult , Prospective Studies , Neurosurgical Procedures/methods
3.
Analyst ; 149(10): 2956-2965, 2024 May 13.
Article En | MEDLINE | ID: mdl-38597984

Glioblastoma is the most fatal and insidious malignancy, due to the existence of the blood-brain barrier (BBB) and the high invasiveness of tumor cells. Abnormal mitochondrial viscosity has been identified as a key feature of malignancies. Therefore, this study reports on a novel fluorescent probe for mitochondrial viscosity, called ZVGQ, which is based on the twisted intramolecular charge transfer (TICT) effect. The probe uses 3-dicyanomethyl-1,5,5-trimethylcyclohexene as an electron donor moiety and molecular rotor, and triphenylphosphine (TPP) cation as an electron acceptor and mitochondrial targeting group. ZVGQ is highly selective, pH and time stable, and exhibits rapid viscosity responsiveness. In vitro experiments showed that ZVGQ could rapidly recognize to detect the changes in mitochondrial viscosity induced by nystatin and rotenone in U87MG cells and enable long-term imaging for up to 12 h in live U87MG cells. Additionally, in vitro 3D tumor spheres and in vivo orthotopic tumor-bearing models demonstrated that the probe ZVGQ exhibited exceptional tissue penetration depth and the ability to penetrate the BBB. The probe ZVGQ not only successfully visualizes abnormal mitochondrial viscosity changes, but also provides a practical and feasible tool for real-time imaging and clinical diagnosis of glioblastoma.


Fluorescent Dyes , Glioblastoma , Mitochondria , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Mitochondria/metabolism , Viscosity , Cell Line, Tumor , Animals , Mice , Mice, Nude , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Optical Imaging
4.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 58-67, 2024 Jan 28.
Article En, Zh | MEDLINE | ID: mdl-38615167

OBJECTIVES: Glioblastoma (GBM) and brain metastases (BMs) are the two most common malignant brain tumors in adults. Magnetic resonance imaging (MRI) is a commonly used method for screening and evaluating the prognosis of brain tumors, but the specificity and sensitivity of conventional MRI sequences in differential diagnosis of GBM and BMs are limited. In recent years, deep neural network has shown great potential in the realization of diagnostic classification and the establishment of clinical decision support system. This study aims to apply the radiomics features extracted by deep learning techniques to explore the feasibility of accurate preoperative classification for newly diagnosed GBM and solitary brain metastases (SBMs), and to further explore the impact of multimodality data fusion on classification tasks. METHODS: Standard protocol cranial MRI sequence data from 135 newly diagnosed GBM patients and 73 patients with SBMs confirmed by histopathologic or clinical diagnosis were retrospectively analyzed. First, structural T1-weight, T1C-weight, and T2-weight were selected as 3 inputs to the entire model, regions of interest (ROIs) were manually delineated on the registered three modal MR images, and multimodality radiomics features were obtained, dimensions were reduced using a random forest (RF)-based feature selection method, and the importance of each feature was further analyzed. Secondly, we used the method of contrast disentangled to find the shared features and complementary features between different modal features. Finally, the response of each sample to GBM and SBMs was predicted by fusing 2 features from different modalities. RESULTS: The radiomics features using machine learning and the multi-modal fusion method had a good discriminatory ability for GBM and SBMs. Furthermore, compared with single-modal data, the multimodal fusion models using machine learning algorithms such as support vector machine (SVM), Logistic regression, RF, adaptive boosting (AdaBoost), and gradient boosting decision tree (GBDT) achieved significant improvements, with area under the curve (AUC) values of 0.974, 0.978, 0.943, 0.938, and 0.947, respectively; our comparative disentangled multi-modal MR fusion method performs well, and the results of AUC, accuracy (ACC), sensitivity (SEN) and specificity(SPE) in the test set were 0.985, 0.984, 0.900, and 0.990, respectively. Compared with other multi-modal fusion methods, AUC, ACC, and SEN in this study all achieved the best performance. In the ablation experiment to verify the effects of each module component in this study, AUC, ACC, and SEN increased by 1.6%, 10.9% and 15.0%, respectively after 3 loss functions were used simultaneously. CONCLUSIONS: A deep learning-based contrast disentangled multi-modal MR radiomics feature fusion technique helps to improve GBM and SBMs classification accuracy.


Brain Neoplasms , Deep Learning , Glioblastoma , Adult , Humans , Glioblastoma/diagnostic imaging , Retrospective Studies , Algorithms , Brain Neoplasms/diagnostic imaging
5.
Sci Rep ; 14(1): 9501, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664436

The use of various kinds of magnetic resonance imaging (MRI) techniques for examining brain tissue has increased significantly in recent years, and manual investigation of each of the resulting images can be a time-consuming task. This paper presents an automatic brain-tumor diagnosis system that uses a CNN for detection, classification, and segmentation of glioblastomas; the latter stage seeks to segment tumors inside glioma MRI images. The structure of the developed multi-unit system consists of two stages. The first stage is responsible for tumor detection and classification by categorizing brain MRI images into normal, high-grade glioma (glioblastoma), and low-grade glioma. The uniqueness of the proposed network lies in its use of different levels of features, including local and global paths. The second stage is responsible for tumor segmentation, and skip connections and residual units are used during this step. Using 1800 images extracted from the BraTS 2017 dataset, the detection and classification stage was found to achieve a maximum accuracy of 99%. The segmentation stage was then evaluated using the Dice score, specificity, and sensitivity. The results showed that the suggested deep-learning-based system ranks highest among a variety of different strategies reported in the literature.


Brain Neoplasms , Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/diagnosis , Magnetic Resonance Imaging/methods , Deep Learning , Glioma/diagnostic imaging , Glioma/pathology , Glioma/diagnosis , Glioblastoma/diagnostic imaging , Glioblastoma/diagnosis , Glioblastoma/pathology , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging , Brain/pathology , Image Interpretation, Computer-Assisted/methods
6.
Nat Commun ; 15(1): 3226, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622132

The tumor microenvironment plays a crucial role in determining response to treatment. This involves a series of interconnected changes in the cellular landscape, spatial organization, and extracellular matrix composition. However, assessing these alterations simultaneously is challenging from a spatial perspective, due to the limitations of current high-dimensional imaging techniques and the extent of intratumoral heterogeneity over large lesion areas. In this study, we introduce a spatial proteomic workflow termed Hyperplexed Immunofluorescence Imaging (HIFI) that overcomes these limitations. HIFI allows for the simultaneous analysis of > 45 markers in fragile tissue sections at high magnification, using a cost-effective high-throughput workflow. We integrate HIFI with machine learning feature detection, graph-based network analysis, and cluster-based neighborhood analysis to analyze the microenvironment response to radiation therapy in a preclinical model of glioblastoma, and compare this response to a mouse model of breast-to-brain metastasis. Here we show that glioblastomas undergo extensive spatial reorganization of immune cell populations and structural architecture in response to treatment, while brain metastases show no comparable reorganization. Our integrated spatial analyses reveal highly divergent responses to radiation therapy between brain tumor models, despite equivalent radiotherapy benefit.


Brain Neoplasms , Glioblastoma , Animals , Mice , Proteomics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/pathology , Glioblastoma/diagnostic imaging , Glioblastoma/radiotherapy , Glioblastoma/pathology , Brain/pathology , Fluorescent Antibody Technique , Tumor Microenvironment
7.
J Egypt Natl Canc Inst ; 36(1): 13, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38644430

BACKGROUND: Glioblastoma (GBM) is a fatal, fast-growing, and aggressive brain tumor arising from glial cells or their progenitors. It is a primary malignancy with a poor prognosis. The current study aims at evaluating the neuroradiological parameters of de novo GBM by analyzing the brain multi-parametric magnetic resonance imaging (mpMRI) scans acquired from a publicly available database analysis of the scans. METHODS: The dataset used was the mpMRI scans for de novo glioblastoma (GBM) patients from the University of Pennsylvania Health System, called the UPENN-GBM dataset. This was a collection from The Cancer Imaging Archive (TCIA), a part of the National Cancer Institute. The MRIs were reviewed by a single diagnostic radiologist, and the tumor parameters were recorded, wherein all recorded data was corroborated with the clinical findings. RESULTS: The study included a total of 58 subjects who were predominantly male (male:female ratio of 1.07:1). The mean age with SD was 58.49 (11.39) years. Mean survival days with SD were 347 (416.21) days. The left parietal lobe was the most commonly found tumor location with 11 (18.96%) patients. The mean intensity for T1, T2, and FLAIR with SD was 1.45E + 02 (20.42), 1.11E + 02 (17.61), and 141.64 (30.67), respectively (p = < 0.001). The tumor dimensions of anteroposterior, transverse, and craniocaudal gave a z-score (significance level = 0.05) of - 2.53 (p = 0.01), - 3.89 (p < 0.001), and 1.53 (p = 0.12), respectively. CONCLUSION: The current study takes a third-party database and reduces physician bias from interfering with study findings. Further prospective and retrospective studies are needed to provide conclusive data.


Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Male , Female , Middle Aged , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Aged , Adult , Multiparametric Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Prognosis , Retrospective Studies , Radiomics
8.
PLoS One ; 19(4): e0299267, 2024.
Article En | MEDLINE | ID: mdl-38568950

BACKGROUND AND OBJECTIVE: Glioblastoma (GBM) is one of the most aggressive and lethal human cancers. Intra-tumoral genetic heterogeneity poses a significant challenge for treatment. Biopsy is invasive, which motivates the development of non-invasive, MRI-based machine learning (ML) models to quantify intra-tumoral genetic heterogeneity for each patient. This capability holds great promise for enabling better therapeutic selection to improve patient outcome. METHODS: We proposed a novel Weakly Supervised Ordinal Support Vector Machine (WSO-SVM) to predict regional genetic alteration status within each GBM tumor using MRI. WSO-SVM was applied to a unique dataset of 318 image-localized biopsies with spatially matched multiparametric MRI from 74 GBM patients. The model was trained to predict the regional genetic alteration of three GBM driver genes (EGFR, PDGFRA and PTEN) based on features extracted from the corresponding region of five MRI contrast images. For comparison, a variety of existing ML algorithms were also applied. Classification accuracy of each gene were compared between the different algorithms. The SHapley Additive exPlanations (SHAP) method was further applied to compute contribution scores of different contrast images. Finally, the trained WSO-SVM was used to generate prediction maps within the tumoral area of each patient to help visualize the intra-tumoral genetic heterogeneity. RESULTS: WSO-SVM achieved 0.80 accuracy, 0.79 sensitivity, and 0.81 specificity for classifying EGFR; 0.71 accuracy, 0.70 sensitivity, and 0.72 specificity for classifying PDGFRA; 0.80 accuracy, 0.78 sensitivity, and 0.83 specificity for classifying PTEN; these results significantly outperformed the existing ML algorithms. Using SHAP, we found that the relative contributions of the five contrast images differ between genes, which are consistent with findings in the literature. The prediction maps revealed extensive intra-tumoral region-to-region heterogeneity within each individual tumor in terms of the alteration status of the three genes. CONCLUSIONS: This study demonstrated the feasibility of using MRI and WSO-SVM to enable non-invasive prediction of intra-tumoral regional genetic alteration for each GBM patient, which can inform future adaptive therapies for individualized oncology.


Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Glioblastoma/pathology , Precision Medicine , Genetic Heterogeneity , Magnetic Resonance Imaging/methods , Algorithms , Machine Learning , Support Vector Machine , ErbB Receptors/genetics
9.
Tunis Med ; 102(2): 94-99, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38567475

INTRODUCTION: Although glioblastoma (GBM) has a very poor prognosis, overall survival (OS) in treated patients shows great difference varying from few days to several months. Identifying factors explaining this difference would improve management of patient treatment. AIM: To determine the relevance of diffusion restriction in newly diagnosed treatment-naïve GBM patients. METHODS: Preoperative magnetic resonance scans of 33 patients with GBM were reviewed. Regions of interest including all the T2 hyperintense lesion were drawn on diffusion weighted B0 images and transferred to the apparent diffusion coefficient (ADC) map. For each patient, a histogram displaying the ADC values within in the regions of interest was generated. Volumetric parameters including tumor regions with restricted diffusion, parameters derived from histogram and mean ADC value of the tumor were calculated. Their relationship with OS was analyzed. RESULTS: Patients with mean ADC value < 1415x10-6 mm2/s had a significantly shorter OS (p=0.021). Among volumetric parameters, the percentage of volume within T2 lesion with a normalized ADC value <1.5 times that in white matter was significantly associated with OS (p=0.0045). Patients with a percentage>23.92% had a shorter OS. Among parameters derived from histogram, the 50th percentile showed a trend towards significance for OS (p=0.055) with patients living longer when having higher values of 50th percentile. A difference in OS was observed between patients according to ADC peak of histogram but this difference did not reach statistical significance (p=0.0959). CONCLUSION: Diffusion magnetic resonance imaging may provide useful information for predicting GBM prognosis.


Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/surgery , Prognosis , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging/methods , Retrospective Studies
10.
Curr Oncol ; 31(4): 2233-2243, 2024 Apr 14.
Article En | MEDLINE | ID: mdl-38668068

Background: Extracting multiregional radiomic features from multiparametric MRI for predicting pretreatment survival in isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) patients is a promising approach. Methods: MRI data from 49 IDH wild-type glioblastoma patients pre-treatment were utilized. Diffusion and perfusion maps were generated, and tumor subregions segmented. Radiomic features were extracted for each tissue type and map. Feature selection on 1862 radiomic features identified 25 significant features. The Cox proportional-hazards model with LASSO regularization was used to perform survival analysis. Internal and external validation used a 38-patient training cohort and an 11-patient validation cohort. Statistical significance was set at p < 0.05. Results: Age and six radiomic features (shape and first and second order) from T1W, diffusion, and perfusion maps contributed to the final model. Findings suggest that a small necrotic subregion, inhomogeneous vascularization in the solid non-enhancing subregion, and edema-related tissue damage in the enhancing and edema subregions are linked to poor survival. The model's C-Index was 0.66 (95% C.I. 0.54-0.80). External validation demonstrated good accuracy (AUC > 0.65) at all time points. Conclusions: Radiomics analysis, utilizing segmented perfusion and diffusion maps, provide predictive indicators of survival in IDH wild-type glioblastoma patients, revealing associations with microstructural and vascular heterogeneity in the tumor.


Brain Neoplasms , Glioblastoma , Magnetic Resonance Imaging , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/mortality , Female , Middle Aged , Magnetic Resonance Imaging/methods , Male , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/mortality , Aged , Adult , Survival Analysis , Prognosis , Radiomics
11.
J Cancer Res Clin Oncol ; 150(4): 208, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38647690

PURPOSE: To investigate and compare the dynamic positron emission tomography (PET) imaging with [18F]Alfatide II Imaging and [11C]Methionine ([11C]MET) in orthotopic rat models of glioblastoma multiforme (GBM), and to assess the utility of [18F]Alfatide II in detecting and evaluating neoangiogenesis in GBM. METHODS: [18F]Alfatide II and [11C]MET were injected into the orthotopic GBM rat models (n = 20, C6 glioma cells), followed by dynamic PET/MR scans 21 days after surgery of tumor implantation. On the PET image with both radiotracers, the MRI-based volume-of-interest (VOI) was manually delineated encompassing glioblastoma. Time-activity curves were expressed as tumor-to-normal brain ratio (TNR) parameters and PET pharmacokinetic modeling (PKM) performed using 2-tissue-compartment models (2TCM). Immunofluorescent staining (IFS), western blotting and blocking experiment of tumor tissue were performed for the validation. RESULTS: Compared to 11C-MET, [18F]Alfatide II presented a persistent accumulation in the tumor, albeit with a slightly lower SUVmean of 0.79 ± 0.25, and a reduced uptake in the contralateral normal brain tissue, respectively. This resulted in a markedly higher tumor-to-normal brain ratio (TNR) of 18.22 ± 1.91. The time-activity curve (TACs) showed a significant increase in radioactive uptake in tumor tissue, followed by a plateau phase up to 60 min for [18F]Alfatide II (time to peak:255 s) and 40 min for [11C]MET (time to peak:135 s) post injection. PKM confirmed significantly higher K1 (0.23/0.07) and K3 (0.26/0.09) in the tumor region compared to the normal brain with [18F]Alfatide II. Compared to [11C]MET imaging, PKM confirmed both significantly higher K1/K2 (1.24 ± 0.79/1.05 ± 0.39) and K3/K4 (11.93 ± 4.28/3.89 ± 1.29) in the tumor region with [18F]Alfatide II. IFS confirmed significant expression of integrin and tumor vascularization in tumor region. CONCLUSION: [18F]Alfatide II demonstrates potential in imaging tumor-associated neovascularization in the context of glioblastoma multiforme (GBM), suggesting its utility as a tool for further exploration in neovascular characterization.


Brain Neoplasms , Glioblastoma , Methionine , Positron-Emission Tomography , Animals , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Glioblastoma/metabolism , Rats , Methionine/pharmacokinetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Positron-Emission Tomography/methods , Peptides, Cyclic/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Carbon Radioisotopes , Male , Fluorine Radioisotopes , Disease Models, Animal , Cell Line, Tumor , Humans
12.
Sci Rep ; 14(1): 8738, 2024 04 16.
Article En | MEDLINE | ID: mdl-38627421

Brain tumor glioblastoma is a disease that is caused for a child who has abnormal cells in the brain, which is found using MRI "Magnetic Resonance Imaging" brain image using a powerful magnetic field, radio waves, and a computer to produce detailed images of the body's internal structures it is a standard diagnostic tool for a wide range of medical conditions, from detecting brain and spinal cord injuries to identifying tumors and also in evaluating joint problems. This is treatable, and by enabling the factor for happening, the factor for dissolving the dead tissues. If the brain tumor glioblastoma is untreated, the child will go to death; to avoid this, the child has to treat the brain problem using the scan of MRI images. Using the neural network, brain-related difficulties have to be resolved. It is identified to make the diagnosis of glioblastoma. This research deals with the techniques of max rationalizing and min rationalizing images, and the method of boosted division time attribute extraction has been involved in diagnosing glioblastoma. The process of maximum and min rationalization is used to recognize the Brain tumor glioblastoma in the brain images for treatment efficiency. The image segment is created for image recognition. The method of boosted division time attribute extraction is used in image recognition with the help of MRI for image extraction. The proposed boosted division time attribute extraction method helps to recognize the fetal images and find Brain tumor glioblastoma with feasible accuracy using image rationalization against the brain tumor glioblastoma diagnosis. In addition, 45% of adults are affected by the tumor, 40% of children and 5% are in death situations. To reduce this ratio, in this study, the Brain tumor glioblastoma is identified and segmented to recognize the fetal images and find the Brain tumor glioblastoma diagnosis. Then the tumor grades were analyzed using the efficient method for the imaging MRI with the diagnosis result of partially high. The accuracy of the proposed TAE-PIS system is 98.12% which is higher when compared to other methods like Genetic algorithm, Convolution neural network, fuzzy-based minimum and maximum neural network and kernel-based support vector machine respectively. Experimental results show that the proposed method archives rate of 98.12% accuracy with low response time and compared with the Genetic algorithm (GA), Convolutional Neural Network (CNN), fuzzy-based minimum and maximum neural network (Fuzzy min-max NN), and kernel-based support vector machine. Specifically, the proposed method achieves a substantial improvement of 80.82%, 82.13%, 85.61%, and 87.03% compared to GA, CNN, Fuzzy min-max NN, and kernel-based support vector machine, respectively.


Brain Neoplasms , Glioblastoma , Adult , Child , Humans , Glioblastoma/diagnostic imaging , Image Processing, Computer-Assisted/methods , Brain Neoplasms/pathology , Brain/diagnostic imaging , Brain/pathology , Algorithms
13.
Sci Rep ; 14(1): 7984, 2024 04 05.
Article En | MEDLINE | ID: mdl-38575630

The extent of surgical resection is an important prognostic factor in the treatment of patients with glioblastoma. Optical coherence tomography (OCT) imaging is one of the adjunctive methods available to achieve the maximal surgical resection. In this study, the tumor margins were visualized with the OCT image obtained from a murine glioma model. A commercialized human glioblastoma cell line (U-87) was employed to develop the orthotopic murine glioma model. A swept-source OCT (SS-OCT) system of 1300 nm was used for three-dimensional imaging. Based on the OCT intensity signal, which was obtained via accumulation of each A-scan data, an en-face optical attenuation coefficient (OAC) map was drawn. Due to the limited working distance of the focused beam, OAC values decrease with depth, and using the OAC difference in the superficial area was chosen to outline the tumor boundary, presenting a challenge in analyzing the tumor margin along the depth direction. To overcome this and enable three-dimensional tumor margin detection, we converted the en-face OAC map into an en-face difference map with x- and y-directions and computed the normalized absolute difference (NAD) at each depth to construct a volumetric NAD map, which was compared with the corresponding H&E-stained image. The proposed method successfully revealed the tumor margin along the peripheral boundaries as well as the margin depth. We believe this method can serve as a useful adjunct in glioma surgery, with further studies necessary for real-world practical applications.


Glioblastoma , Glioma , Humans , Animals , Mice , Glioblastoma/diagnostic imaging , Tomography, Optical Coherence/methods , NAD , Glioma/pathology , Imaging, Three-Dimensional
14.
Clin Radiol ; 79(6): 460-472, 2024 Jun.
Article En | MEDLINE | ID: mdl-38614870

BACKGROUND: Several studies have been published comparing deep learning (DL)/machine learning (ML) to radiologists in differentiating PCNSLs from GBMs with equivocal results. We aimed to perform this meta-analysis to evaluate the diagnostic accuracy of ML/DL versus radiologists in classifying PCNSL versus GBM using MRI. METHODOLOGY: The study was performed in accordance with PRISMA guidelines. Data was extracted and interpreted by two researchers with 12 and 23 years' experience, respectively, and QUADAS-2 tool was used for quality and risk-bias assessment. We constructed contingency tables to derive sensitivity, specificity accuracy, summary receiver operating characteristic (SROC) curve, and the area under the curve (AUC). RESULTS: Our search identified 11 studies, of which 8 satisfied our inclusion criteria and restricted the analysis in each study to reporting the model showing highest accuracy, with a total sample size of 1159 patients. The random effects model showed a pooled sensitivity of 0.89 [95% CI:0.84-0.92] for ML and 0.82 [95% CI:0.76-0.87] for radiologists. Pooled specificity was 0.88 [95% CI: 0.84-0.91] for ML and 0.90 [95% CI: 0.81-0.95] for radiologists. Pooled accuracy was 0.88 [95% CI: 0.86-0.90] for ML and 0.86 [95% CI: 0.78-0.91] for radiologists. Pooled AUC of ML was 0.94 [95% CI:0.92-0.96]and for radiologists, it was 0.90 [95% CI: 0.84-0.93]. CONCLUSIONS: MRI-based ML/DL techniques can complement radiologists to improve the accuracy of classifying GBMs from PCNSL, possibly reduce the need for a biopsy, and avoid any unwanted neurosurgical resection of a PCNSL.


Deep Learning , Glioblastoma , Lymphoma , Machine Learning , Magnetic Resonance Imaging , Humans , Diagnosis, Differential , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Lymphoma/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Sensitivity and Specificity , Radiologists , Central Nervous System Neoplasms/diagnostic imaging , Astrocytoma/diagnostic imaging
15.
J Cancer Res Clin Oncol ; 150(4): 220, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684578

PURPOSE: The purpose of this study is to develop accurate and automated detection and segmentation methods for brain tumors, given their significant fatality rates, with aggressive malignant tumors like Glioblastoma Multiforme (GBM) having a five-year survival rate as low as 5 to 10%. This underscores the urgent need to improve diagnosis and treatment outcomes through innovative approaches in medical imaging and deep learning techniques. METHODS: In this work, we propose a novel approach utilizing the two-headed UNetEfficientNets model for simultaneous segmentation and classification of brain tumors from Magnetic Resonance Imaging (MRI) images. The model combines the strengths of EfficientNets and a modified two-headed Unet model. We utilized a publicly available dataset consisting of 3064 brain MR images classified into three tumor classes: Meningioma, Glioma, and Pituitary. To enhance the training process, we performed 12 types of data augmentation on the training dataset. We evaluated the methodology using six deep learning models, ranging from UNetEfficientNet-B0 to UNetEfficientNet-B5, optimizing the segmentation and classification heads using binary cross entropy (BCE) loss with Dice and BCE with focal loss, respectively. Post-processing techniques such as connected component labeling (CCL) and ensemble models were applied to improve segmentation outcomes. RESULTS: The proposed UNetEfficientNet-B4 model achieved outstanding results, with an accuracy of 99.4% after postprocessing. Additionally, it obtained high scores for DICE (94.03%), precision (98.67%), and recall (99.00%) after post-processing. The ensemble technique further improved segmentation performance, with a global DICE score of 95.70% and Jaccard index of 91.20%. CONCLUSION: Our study demonstrates the high efficiency and accuracy of the proposed UNetEfficientNet-B4 model in the automatic and parallel detection and segmentation of brain tumors from MRI images. This approach holds promise for improving diagnosis and treatment planning for patients with brain tumors, potentially leading to better outcomes and prognosis.


Brain Neoplasms , Deep Learning , Magnetic Resonance Imaging , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/classification , Brain Neoplasms/pathology , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Glioblastoma/diagnostic imaging , Glioblastoma/classification , Glioblastoma/pathology , Glioma/diagnostic imaging , Glioma/classification , Glioma/pathology
16.
Sci Rep ; 14(1): 5305, 2024 03 04.
Article En | MEDLINE | ID: mdl-38438420

Glioblastoma (GBM) is the most common primary malignant brain tumor. Currently, there are few effective treatment options for GBM beyond surgery and chemo-radiation, and even with these interventions, median patient survival remains poor. While immune checkpoint inhibitors (ICIs) have demonstrated therapeutic efficacy against non-central nervous system cancers, ICI trials for GBM have typically had poor outcomes. TIGIT is an immune checkpoint receptor that is expressed on activated T-cells and has a role in the suppression of T-cell and Natural Killer (NK) cell function. As TIGIT expression is reported as both prognostic and a biomarker for anti-TIGIT therapy, we constructed a molecular imaging agent, [89Zr]Zr-DFO-anti-TIGIT (89Zr-αTIGIT), to visualize TIGIT in preclinical GBM by immunoPET imaging. PET imaging and biodistribution analysis of 89Zr-αTIGIT demonstrated uptake in the tumor microenvironment of GBM-bearing mice. Blocking antibody and irrelevant antibody tracer studies demonstrated specificity of 89Zr-αTIGIT with significance at a late time point post-tracer injection. However, the magnitude of 89Zr-αTIGIT uptake in tumor, relative to the IgG tracer was minimal. These findings highlight the features and limitations of using 89Zr-αTIGIT to visualize TIGIT in the GBM microenvironment.


Glioblastoma , Glioma , Humans , Animals , Mice , Tissue Distribution , Glioma/diagnostic imaging , Glioblastoma/diagnostic imaging , Positron-Emission Tomography , Receptors, Immunologic , Tumor Microenvironment
17.
Clin Chim Acta ; 557: 117878, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38493942

Glioblastoma (GBM) is a highly aggressive and life-threatening neurological malignancy of predominant astrocyte origin. This type of neoplasm can develop in either the brain or the spine and is also known as glioblastoma multiforme. Although current diagnostic methods such as magnetic resonance imaging (MRI) and positron emission tomography (PET) facilitate tumor location, these approaches are unable to assess disease severity. Furthermore, interpretation of imaging studies requires significant expertise which can have substantial inter-observer variability, thus challenging diagnosis and potentially delaying treatment. In contrast, biosensing systems offer a promising alternative to these traditional approaches. These technologies can continuously monitor specific molecules, providing valuable real-time data on treatment response, and could significantly improve patient outcomes. Among various types of biosensors, electrochemical systems are preferred over other types, as they do not require expensive or complex equipment or procedures and can be made with readily available materials and methods. Moreover, electrochemical biosensors can detect very small amounts of analytes with high accuracy and specificity by using various signal amplification strategies and recognition elements. Considering the advantages of electrochemical biosensors compared to other biosensing methods, we aim to highlight the potential application(s) of these sensors for GBM theranostics. The review's innovative insights are expected to antecede the development of novel biosensors and associated diagnostic platforms, ultimately restructuring GBM detection strategies.


Biosensing Techniques , Glioblastoma , Biosensing Techniques/methods , Early Detection of Cancer , Electrochemical Techniques , Glioblastoma/diagnostic imaging , Magnetic Resonance Imaging
18.
J Vis Exp ; (205)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38497657

The delivery of intravenously administered cancer therapeutics to brain tumors is limited by the blood-brain barrier. A method to directly image the accumulation and distribution of macromolecules in brain tumors in vivo would greatly enhance our ability to understand and optimize drug delivery in preclinical models. This protocol describes a method for real-time in vivo tracking of intravenously administered fluorescent-labeled nanoparticles with two-photon intravital microscopy (2P-IVM) in a mouse model of glioblastoma (GBM). The protocol contains a multi-step description of the procedure, including anesthesia and analgesia of experimental animals, creating a cranial window, GBM cell implantation, placing a head bar, conducting 2P-IVM studies, and post-surgical care for long-term follow-up studies. We show representative 2P-IVM imaging sessions and image analysis, examine the advantages and disadvantages of this technology, and discuss potential applications. This method can be easily modified and adapted for different research questions in the field of in vivo preclinical brain imaging.


Brain Neoplasms , Glioblastoma , Animals , Mice , Glioblastoma/diagnostic imaging , Disease Models, Animal , Brain , Brain Neoplasms/diagnostic imaging , Intravital Microscopy
19.
Neurosurg Rev ; 47(1): 120, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38498065

PURPOSE: Here, we conducted a meta-analysis to explore the use of intraoperative ultrasound (iUS)-guided resection in patients diagnosed with high-grade glioma (HGG) or glioblastoma (GBM). Our aim was to determine whether iUS improves clinical outcomes compared to conventional neuronavigation (CNN). METHODS: Databases were searched until April 21, 2023 for randomized controlled trials (RCTs) and observational cohort studies that compared surgical outcomes for patients with HGG or GBM with the use of either iUS in addition to standard approach or CNN. The primary outcome was overall survival (OS). Secondary outcomes include volumetric extent of resection (EOR), gross total resection (GTR), and progression-free survival (PFS). Outcomes were analyzed by determining pooled relative risk ratios (RR), mean difference (MD), and standardized mean difference (SMD) using random-effects model. RESULTS: Of the initial 867 articles, only 7 articles specifically met the inclusion criteria (1 RCT and 6 retrospective cohorts). The analysis included 732 patients. Compared to CNN, the use of iUS was associated with higher OS (SMD = 0.26,95%CI=[0.12,0.39]) and GTR (RR = 2.02; 95% CI=[1.31,3.1]) for both HGG and GBM. There was no significant difference in PFS or EOR. CONCLUSION: The use of iUS in surgical resections for HGG and GBM can improve OS and GTR compared to CNN, but it did not affect PFS. These results suggest that iUS reduces mortality associated with HGG and GBM but not the risk of recurrence. These results can provide valuable cost-effective interventions for neurosurgeons in HGG and GBM surgery.


Glioblastoma , Glioma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/surgery , Glioma/diagnostic imaging , Glioma/surgery , Databases, Factual , Neuronavigation , Neurosurgeons
20.
Acta Neurochir (Wien) ; 166(1): 138, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38488994

PURPOSE: The role of repeat resection for recurrent glioblastoma (rGB) remains equivocal. This study aims to assess the overall survival and complications rates of single or repeat resection for rGB. METHODS: A single-centre retrospective review of all patients with IDH-wildtype glioblastoma managed surgically, between January 2014 and January 2022, was carried out. Patient survival and factors influencing prognosis were analysed, using Kaplan-Meier and Cox regression methods. RESULTS: Four hundred thirty-two patients were included, of whom 329 underwent single resection, 83 had two resections and 20 patients underwent three resections. Median OS (mOS) in the cohort who underwent a single operation was 13.7 months (95% CI: 12.7-14.7 months). The mOS was observed to be extended in patients who underwent second or third-time resection, at 22.9 months and 44.7 months respectively (p < 0.001). On second operation achieving > 95% resection or residual tumour volume of < 2.25 cc was significantly associated with prolonged survival. There was no significant difference in overall complication rates between primary versus second (p = 0.973) or third-time resections (p = 0.312). The use of diffusion tensor imaging (DTI) guided resection was associated with reduced post-operative neurological deficit (RR 0.37, p = 0.002), as was use of intraoperative ultrasound (iUSS) (RR 0.45, p = 0.04). CONCLUSIONS: This study demonstrates potential prolongation of survival for rGB patients undergoing repeat resection, without significant increase in complication rates with repeat resections. Achieving a more complete repeat resection improved survival. Moreover, the use of intraoperative imaging adjuncts can maximise tumour resection, whilst minimising the risk of neurological deficit.


Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/surgery , Diffusion Tensor Imaging , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Neoplasm Recurrence, Local/surgery , Prognosis , Retrospective Studies
...